Main pillar:
- Smart, Green and Integrated Transport
Budget:
Currency:
Call deadline:
Statut:
- Open
Description:
Scope:
This topic calls for a large scale demonstration project covering FCEVs and HRSs, coupled to decentralized electrolysers, to be deployed in alignment with and in cooperation with national or/and regional roll-out activities. Demonstration of electrolyser integrated HRS operating in grid balancing mode in a selection of the new HRS installed will also be covered.
Vehicles
For vehicles, the project will cover the roll-out of a fleet of at least 200 FCEVs. This should comprise multiple OEM supplied passenger cars, utility vehicles (light duty vans, medium duty trucks) and buses. Other vehicles can be included provided they can demonstrate a strong business case a significant market potential (10,000’s per year) and have reached a TRL of 7 or above.
The majority of FCEV's are expected to be using a fuel cell system as the key power source, and 70MPa storage in the case of passenger cars or 35 MPa for buses. Storage systems lower than 70MPa can be allowed if relevant and there is a business and customer case for inclusion in the proposal. Range extenders using FCs are also eligible if relevant and can show a clear advantage over all-electric drivetrains for the same vehicle type.
The minimum operation for passenger cars is 36 months or 45,000 km. For buses it should be 36 months in operational service at minimum 10h/day (unless regulatory restrictions prohibit 10h). The minimum operational period for vehicles introduced in the last 15 months of the project is 12 months or 10,000 km for passenger cars and 12 months or 50,000 km for buses, though in both cases arrangements for extending operation after the end of the project are expected.
HRS
In this topic, the focus is on demonstrating at least 20 HRS in operation and on investigating the specific problems arising from the need to provide high volumes of hydrogen per day while offering satisfactory service to HRS customers in terms of refuelling duration per vehicle (back to back refuelling performance). It is expected that HRS will prove performance under high load. In addition, proposals are expected to address reliability, metering accuracy, purity and station efficiency.
When addressing the passenger car market, HRS facilities need to be accessible for private customers/users and should preferably be integrated in forecourts of conventional refuelling stations. When addressing the utility vehicle market or local fleets, HRS facilities might be located on private forecourts, with or without public access, as long as several customers are already identified as long term users of the HRS. The first HRS need to be operational at the latest 24 months after the start of the project. The majority of the HRS have to be operational no later than 36 months after project start. The minimum operation for the HRS is 5 years (operation beyond the project life is expected.
The project should aim at benchmarking and establishing links between existing regional and national initiatives in order to synchronize actions and maximize impact Europe wide. The demonstration sites for passenger cars, buses, utility vehicles and vans must be located in more than one EU member state where H2 Mobility initiatives, or similar initiatives (like HIT) aiming at deployment of hydrogen based mobility programmes are in place, to leverage the activities already underway. HRS should be sited to provide interconnectivity with existing initiatives to create a plausible driving experience both within and between the networks. In view of the requirement to evaluate HRS under high load, consideration should also be given to locations with a high number of users, addressing both privately owned or fleet vehicles.
Different options for the ownership and investment in HRS should be analysed and tested.